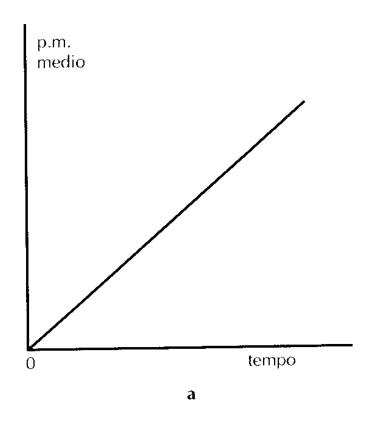
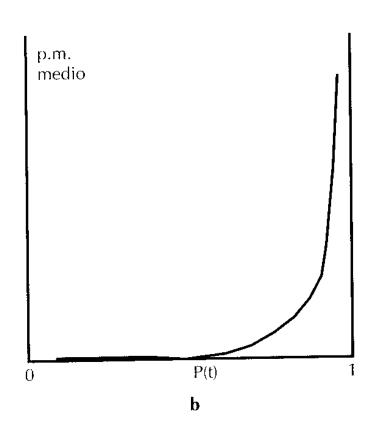
BASICS ON POLYMERIZATION

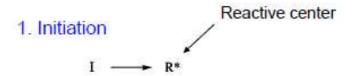

Step Polymerization vs. Chain Polymerization

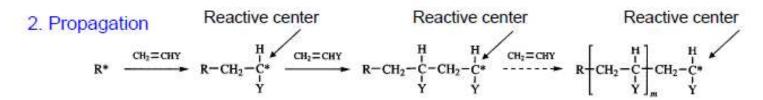

Step Polymerization

- Reaction occurs between any of the different sized species present in the reaction system
- Monomer disappears fast
- Molecular weight increases relatively slowly with conversion

Chain Polymerization

- Monomer only reacts with the reactive center
- Chain growth is very rapid, high molecular weight polymer is formed immediately
- Monomer concentration decreases throughout the polymerization, while the number of high molecular weight polymer molecules increases
- The molecular weight of the polymer is relatively independent on monomer conversion


Chain Polymerization


$$R^* \xrightarrow{CH_2 = CHY} R - CH_2 - C^* \xrightarrow{H} CH_2 = CHY R - CH_2 - C - CH_2 - C^* CH_2 - C^*$$

R* can be a free radical, cation or anion

- · Monomer only reacts with the reactive center
- Chain growth is very rapid
- Monomer concentration decreases throughout the polymerization, while the number of high molecular weight polymer molecules increases
- The molecular weight of the polymer is relatively independent on

General Mechanism of Chain Polymerization

3. Termination

The active species can be a: Free radical → Radical chain polymerization Anion → Anionic polymerization Cation → Cationic polymerization

The choice of polymerization method does not only depend on the structure of the monomer, but also on the desired molecular weight, molecular weight distribution, etc.

General Considerations of Polymerizability

- Thermodynamic feasibility: ∆ G < 0 For a wide range of monomers, $\Delta G < 0$
- 2. Kinetic feasibility:

Does the reaction proceed at a reasonable rate under a particular set of conditions?

This depends on:

- (i) Type of propagating center (+, -, or •)
- (ii) Substituent effects (i.e. the nature of Y)
 - Inductive effects
 - Resonance effects

General Considerations of Polymerizability

The ability to carry out a thermodynamically feasible polymerization depends on its kinetic feasibility

TABLE 3-1 Types of Chain Polymerization Undergone by Various Unsaturated Monomers

Monomers	Type of Initiation		
	Radical	Cationic	Anlenie*
Ethylene	+	-	+
1-Alkyl alkenes (α-olefins)	4	0.00	+
1,1-Dialkyi alkenes	_	+	_
1,3-Dienes	+	+	+
Styrene, a-methyl styrene	+	+	+
Halogenated alkenes	+	-	_
Vinyl esters (CH2=CHOCOR)	+	-	_
Acrylates, methacrylates	+	0.00	+
Acrylonitrile, methacrylonitrile	+	-	+
Acrylamide, methacrylamide	+	70 00	+
Vinyl others	-	+	_
N-Vinyl carbazole	+	+	-
N-Vinyl pyrrolidone	+	+	_
Aldehydes, ketones	_	+	+

[&]quot;Includes unionic coordination initiation (Chap. 8).

The carbonyl bond is not prone to radical polymerization due to its polarized nature

Radical Chain Polymerization

1. Initiation

$$I \xrightarrow{k_i} 2R^{\bullet}$$

$$R^{\bullet} + M \xrightarrow{k_i} M_1^{\bullet}$$

 R^* = initiator radical / primary radical M_1^* = chain-initiating species k_d = rate constant for initiator decomposition k_i = rate constant for the initiation step

2. Propagation

$$M_1$$
 + M $\xrightarrow{k_p}$ M_2 · M_3 · + M $\xrightarrow{k_p}$ M_4 · etc., etc.

 k_p = rate constant for propagation (10^2 - 10^4 L.mol⁻¹.s⁻¹)

or in general terms

$$M_n \cdot + M \xrightarrow{k_p} M_{n+1} \cdot$$

[concept of equal reactivity of functional groups]

3. Termination

$$\sim \text{CH}_2 - \overset{\text{H}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C$$

$$\sim \text{CH}_2 - \overset{\text{H}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}$$

$$M_{n} \cdot + M_{m} \cdot \xrightarrow{k_{n}} M_{n+m}$$
 $M_{n} \cdot + M_{m} \cdot \xrightarrow{k_{n}} M_{n} + M_{m}$

or:
 k_{i}
 $M_{n} \cdot + M_{m} \cdot \xrightarrow{k_{i}} \text{ dead polymer}$

k_{tc} = rate constant for termination by coupling k_{td} = rate constant for termination by disproportionation

with: $k_t = ak_{tc} + (1-a)k_{td}$

- k_t = rate constant for termination (10⁶-10⁸ L.mol⁻¹.s⁻¹)
- a and (1-a) the fractions of termination by coupling and disproportionation, respectively

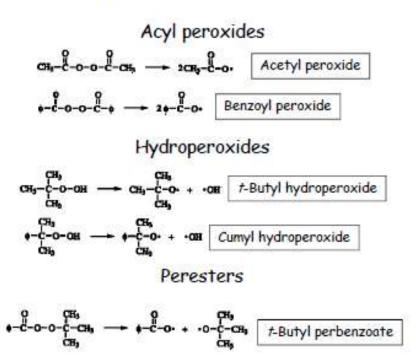
Rate of Polymerization

Assumption: kp and kt independent of the size of the radical (concept of equal reactivity of functional groups)

$$\frac{-d[\mathbf{M}]}{dt} = R_i + R_p \qquad \qquad \frac{-d[\mathbf{M}]}{dt} = R_p \qquad \qquad R_p = k_p[\mathbf{M}\cdot][\mathbf{M}] \qquad (1)$$

The number of monomer molecules reacting in the initiation step can be neglected compared to the polymerization step

Steady-state assumption:


$$R_i = R_t = 2k_t [\mathbf{M}^{\bullet}]^2 \qquad [\mathbf{M}^{\bullet}] = \left(\frac{R_i}{2k_t}\right)^{1/2} \qquad (2)$$

Combine (1) and (2):
$$R_p = k_p[M] \left(\frac{R_i}{2k_t}\right)^{1/2}$$

Thermal Initiation

- Thermal homolytic dissociation:
 - Dissociation energy 100-170 kJ/mol
 - 0-0, S-5, N-0 compounds

Examples:

Alkyl peroxides

Azo compounds

(C-N bond dissociation energy is high, but homolysis is driven by the formation of the highly stable N₂ molecule)

2,2'-Azobisisobutyronitrile (AIBN)

Initiator Efficiency

Initiator efficiency (f) = fraction of radicals formed in the primary step of initiator decomposition, which are successful in initiating polymerization

Initiator is wasted due to:

Induced decomposition of initiator (= chain transfer to initiator)

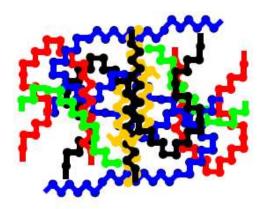
$$M_{n}$$
 + $\phi \stackrel{\circ}{\text{CO}} - O \stackrel{\circ}{\text{C}} \phi$ \longrightarrow $M_{n} - O \stackrel{\circ}{\text{C}} \phi$ + $\phi \stackrel{\circ}{\text{CO}} \circ$

2) Side reactions of radicals formed in the primary decomposition step

Often (1) is neglected when values of f are discussed

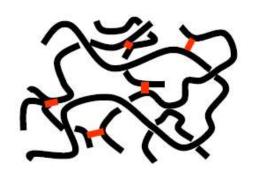
f: ~ 0.3-0.8

The Cage Effect

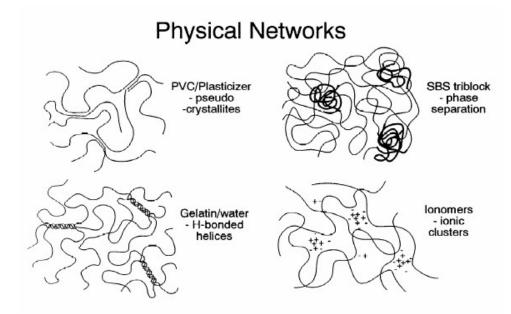

The cage effect describes lowering of f due to reactions of radicals entrapped in a solvent cage

$$\begin{array}{lll} \phi \text{COO} - \text{OOC} \phi & \Longrightarrow & [2\phi \text{COO} \cdot] \\ [2\phi \text{COO} \cdot] & \longrightarrow & [\phi \text{COO} \phi + \phi \text{CO}_2] \\ [2\phi \text{COO} \cdot] & + M & \longrightarrow & \phi \text{CO}_2 \cdot + \phi \text{COOM} \cdot \\ [2\phi \text{COO} \cdot] & \longrightarrow & 2\phi \text{COO} \cdot \\ \phi \text{COO} \cdot & + M & \longrightarrow & \phi \text{COOM} \cdot \\ \phi \text{COO} \cdot & \longrightarrow & \phi \cdot & + \text{CO}_2 \\ \phi \cdot & + M & \longrightarrow & \phi \text{M} \cdot \\ \phi \cdot & + \phi \text{COO} \cdot & \longrightarrow & \phi \text{COO} \phi \\ 2\phi \cdot & \longrightarrow & \phi - \phi \\ [2\phi \text{COO} \cdot] & \longrightarrow & [\phi \text{COO} \cdot + \text{CO}_2 + \phi \cdot] \\ [\phi \text{COO} \cdot & + \text{CO}_2 + \phi \cdot] & \longrightarrow & [\text{CO}_2 + \phi \text{COO} \phi] \\ [\phi \text{COO} \cdot & + \text{CO}_2 + \phi \cdot] & \longrightarrow & \phi \text{COO} \cdot & + \text{CO}_2 + \phi \cdot \\ [2\phi \text{COO} \cdot] & \longrightarrow & [2\text{CO}_2 + 2\phi \cdot] \\ [2\text{CO}_2 + 2\phi \cdot] & \longrightarrow & [2\text{CO}_2 + \phi - \phi] \\ [2\text{CO}_2 + 2\phi \cdot] & \longrightarrow & [2\text{CO}_2 + \phi - \phi] \\ [2\text{CO}_2 + 2\phi \cdot] & \longrightarrow & 2\text{CO}_2 + 2\phi \cdot \end{array}$$

WHAT IS A NETWORK POLYMER?

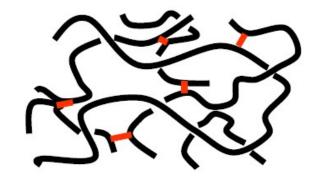

Thermoplastic polymers

- linear (or lightly branched polymer chain)
- one-dimensional connectivity
- finite molecular weight
- amorphous or crystalline
- flows as a melt when heated
- soluble in solvents



Crosslinked polymer

- hyper-branched chain
- three dimensional connectivity
- · infinite molecular weight
- amorphous
- rubber-like at high temperatures
- insoluble (but swells) in solvents



Physical networks and crosslinked networks

Chains held together by:

- crystals
- dispersed block copolymer phase
- •H-bonds
- •ions

Chains held together by chemical linkages formed by:

- chain growth polymerization
- step growth polymerization
- chain linking

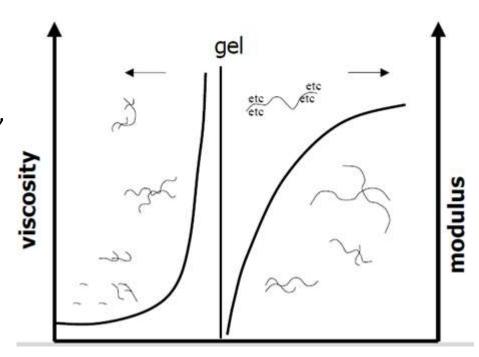
TS are networks formed by the chemical reaction of monomers, at least one of which has a functionality higher than 2.

The synthesis starts from a mixture of reactive molecules, the TS precursors.

IN the course of the polymer network formation 2 principal structural transformations may occur: **Gelation** and **Vitrification**

At a particular reaction extent gelation takes place meaning that a giant macromolecule percolates through the sample.

Before Gelation

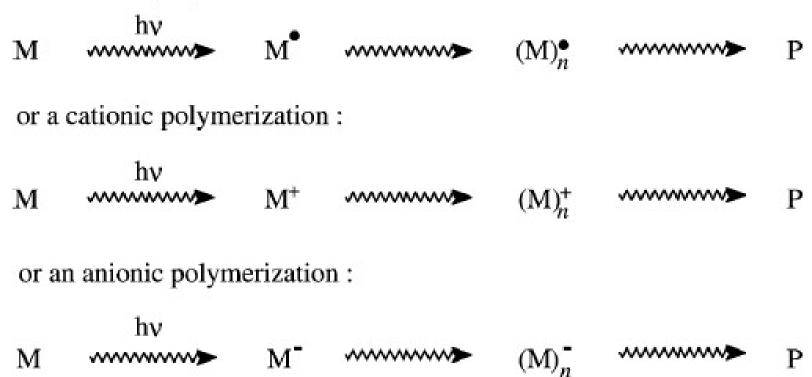

The material is a sol with a finite value of viscosity

At Gelation

Viscosity increase to infinte

After Gelation

An insoluble fraction (the gel fraction, Is present in the system



- Free Radical
- Advantages:
- Wider Applications
- Availability of wide range of photoinitiators
- Disadvantages:
- Oxygen inhibition

- Cationic
 - **Advantages**
- Rapid
- No oxygen inhibition
- Disadvantages
- Inhibited by bases
- Cured products may contain acids and counter anion impurities

- Anionic
- Advantages
- Rapid
- Disadvantages
- Inhibited by Protics
- Limited initiators

A radical polymerization:

Property	Radical	Cationic
Polymerization rate	High	Moderate/High
Oxygen sensitivity	Substantial	Absent
Volume change on cure	Large	Negligible
Adhesion	Moderate/Good	Good
Postcure	Absent	Strong
Chemical resistance	Moderate/Good	Good
Irritant properties of the monomers	High	Absent

RADICAL PHOTOPOLYMERIZATION

CATIONIC PHOTOPOLYMERIZATION

$$H^+ X^- + \bigvee_{O} \longrightarrow \bigvee_{O^+ X^-} \bigvee_{O} \longrightarrow \bigvee_{N^- \times N^-} \bigvee_{N^- \times N^-} \bigvee_{N^- \times N^- \times N^-} \bigvee_{N^- \times N^-} \bigvee_{N$$